Touching In Biological Systems: A 3D Force Microscope
نویسندگان
چکیده
منابع مشابه
Force-feedback high-speed atomic force microscope for studying large biological systems.
We designed and developed a high-speed atomic force microscope (HSAFM) utilizing a force-feedback scheme for imaging large biological samples. The system collects three simultaneous images: a deflection image, a topographic image, and a force image. We demonstrated that this force-feedback HSAFM is capable of acquiring large topographic images of Escherichia coli biofilms at approximately one f...
متن کاملA high-speed atomic force microscope for studying biological macromolecules.
The atomic force microscope (AFM) is a powerful tool for imaging individual biological molecules attached to a substrate and placed in aqueous solution. At present, however, it is limited by the speed at which it can successively record highly resolved images. We sought to increase markedly the scan speed of the AFM, so that in the future it can be used to study the dynamic behavior of biomolec...
متن کاملAtomic Force Microscopy Application in Biological Research: A Review Study
Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...
متن کاملCooperativity in biological systems
Living organisms can sense and respond to external and internal stimuli. Response isdemonstrated in many forms including modulation of gene expression profiles, motility,secretion, cell death, etc. Nevertheless, all forms share a basic property: they depend on sensingsmall changes in the concentration of an effector molecule or subtle conformational changes ina protein and invoking the appropri...
متن کاملHydration force in the atomic force microscope: A computational study.
Using a hard sphere model and numerical calculations, the effect of the hydration force between a conical tip and a flat surface in the atomic force microscope (AFM) is examined. The numerical results show that the hydration force remains oscillatory, even down to a tip apex of a single water molecule, but its lateral extent is limited to a size of a few water molecules. In general, the contrib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microscopy and Microanalysis
سال: 2002
ISSN: 1431-9276,1435-8115
DOI: 10.1017/s1431927602102261